Revisiting Classical Dynamic Controllability: A Tighter Complexity Analysis
نویسندگان
چکیده
Simple Temporal Networks with Uncertainty (STNUs) allow the representation of temporal problems where some durations are uncontrollable (determined by nature), as is often the case for actions in planning. It is essential to verify that such networks are dynamically controllable (DC) – executable regardless of the outcomes of uncontrollable durations – and to convert them to an executable form. We use insights from incremental DC verification algorithms to re-analyze the original, classical, verification algorithm. This algorithm is the entry level algorithm for DC verification, based on a less complex and more intuitive theory than subsequent algorithms. We show that with a small modification the algorithm is transformed from pseudo-polynomial to O(n4) which makes it still useful. We also discuss a change reducing the amount of work performed by the algorithm.
منابع مشابه
Classical Dynamic Controllability Revisited - A Tighter Bound on the Classical Algorithm
Simple Temporal Networks with Uncertainty (STNUs) allow the representation of temporal problems where some durations are uncontrollable (determined by nature), as is often the case for actions in planning. It is essential to verify that such networks are dynamically controllable (DC) – executable regardless of the outcomes of uncontrollable durations – and to convert them to an executable form....
متن کاملControllability of Soft Temporal Constraint Problems
In real-life temporal scenarios, uncertainty and preferences are often essential, coexisting aspects. We present a formalism where temporal constraints with both preferences and uncertainty can be defined. We show how three classical notions of controllability (strong, weak and dynamic), which have been developed for uncertain temporal problems, can be generalised to handle also preferences. We...
متن کاملUncertainty in Soft Temporal Constraint Problems:A General Framework and Controllability Algorithms forThe Fuzzy Case
In real-life temporal scenarios, uncertainty and preferences are often essential and coexisting aspects. We present a formalism where quantitative temporal constraints with both preferences and uncertainty can be defined. We show how three classical notions of controllability (that is, strong, weak, and dynamic), which have been developed for uncertain temporal problems, can be generalized to h...
متن کاملGeometric Controllability of The Purcell's Swimmer and its Symmetrized Cousin
We analyse weak and strong controllability notions for the locomotion of the 3-link Purcell’s swimmer, the simplest possible swimmer at low Reynolds number from a geometric framework. After revisiting a purely kinematic form of the equations, we apply an extension of Chow’s theorem to analyze controllability in the strong and weak sense. Further, the connection form for the symmetric version of...
متن کاملA New Robust Control Design Based on Feedback Compensator for Sssc
In this paper, the modified linearized Phillips-Heffron model is utilized to theoretically analyze asingle-machine infinite-bus (SMIB) installed with SSSC. Then, the results of this analysis are used forassessing the potential of an SSSC supplementary controller to improve the dynamic stability of apower system. This is carried out by measuring the electromechanical controllability through sing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014